ROLL NO 62 DIV D
Across
- 2. : Evolution of Analytics
- 4. : Types of Analytics (Descriptive, Diagnostic, Predictive, Prescriptive)
- 7. : Web Scraping basics in R
- 8. : Data Structures in R (vectors, lists, data frames, matrices, arrays, factors)
- 10. : Exploratory Data Analysis (EDA)
- 12. : Skills of a Business Analyst
- 15. : Business Analytics Applications (Marketing Analytics, HR Analytics, Supply Chain Analytics, Web & Social Media Analytics, Healthcare Analytics)
- 19. : Spatial Analysis (introduction)
- 20. : Business Analytics vs Business Analysis
- 21. : Business Intelligence vs Data Science
- 23. : Line, Bar, Pie Charts, Histograms (visualization types)
- 26. : Analytical Decision-Making Process
- 27. : Need for Analytics
- 30. : Data Visualization (concept)
Down
- 1. : Characteristics of Good Analytical Questions
- 3. : Data maturity stages of organizations
- 5. : Tools for Analytics
- 6. : Apply / sapply / tapply functions in R
- 9. : Data Analyst vs Business Analyst
- 11. : Data Types in R
- 13. : Popular Data Visualization Tools
- 14. : Flow Control in R (loops, conditionals)
- 16. : Data Quality Issues
- 17. : R Programming Environment
- 18. : File operations in R (reading/writing, SQL in R)
- 22. : Data Exploration / Data Cleaning
- 24. : Hypothesis Testing (conceptual)
- 25. : Concept of Insights
- 28. : Definition of Analytics
- 29. : Data, Information, Knowledge (differences)